конечно порожденная алгебра

конечно порожденная алгебра
finitely generated algebra матем.

Русско-английский научно-технический словарь Масловского. 2015.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • АЛГЕБРА — часть математики, посвященная изучению алгебраических операций. Исторический очерк. Простейшие алгебраич. операции арифметич. действия над натуральными и положительными рациональными числами встречаются в самых ранних математич. текстах,… …   Математическая энциклопедия

  • ЙОРДАНОВА АЛГЕБРА — алгебра, в к рой справедливы тождества 4 Такие алгебры впервые возникли в работе П. Йордана [1], посвященной аксиоматизации основ квантовой механики (см. также [2]), а затем нашли применения в алгебре, анализе и геометрии. Пусть А ассоциативная… …   Математическая энциклопедия

  • ЛОКАЛЬНО НИЛЬПОТЕНТНАЯ АЛГЕБРА — алгебра, всякая конечно порожденная подалгебра к рой нильпотентна. Л. н. а. удобно себе представлять как объединение возрастающей цепочки нильпотентных подалгебр. Л. н. а. с ассоциативными степенями является нильалгеброй. Л. н. а. Ли является… …   Математическая энциклопедия

  • ЛОКАЛЬНО РАЗРЕШИМАЯ АЛГЕБРА — алгебра, для к рой всякая ее конечно порожденная подалгебра разрешима. Л. р. а. удобно представлять себе как объединение возрастающей цепочки разрешимых подалгебр. Класс Л. р. а. замкнут относительно перехода к подалгебрам и взятия гомоморфных… …   Математическая энциклопедия

  • АЛГЕБРА МНОЖЕСТВ — непустая совокупность подмножеств нек рого множества W, замкнутая относительно теоретико множественных операций (объединения, пересечения, образования дополнения), производимых в конечном числе. Для того чтобы нек рый класс подмножеств множества… …   Математическая энциклопедия

  • ХОПФА АЛГЕБРА — биалгебра, гипералгебра градуированный модуль Анад ассоциативно коммутативным кольцом К с единицей, снабженный одновременно структурой ассоциативной градуированной алгебры с единицей и структурой ассоциативной градуированной коалгебры скоединицей …   Математическая энциклопедия

  • ГОМОЛОГИЧЕСКАЯ АЛГЕБРА — раздел алгебры, основным объектом изучения к рого являются производные функторы на различных категориях алгебраич. объектов (модулей над данным кольцом, пучков и т. д.). Одним из истоков Г. а. явилась теория гомологии топологич. пространств, в к… …   Математическая энциклопедия

  • ЭНГЕЛЯ ТЕОРЕМА — пусть для конечномерной алгебры Ли над полем kлинейные операторы ad X (где ad X(Y) = [X, Y]) нильпотентны для всех Тогда существует базис алгебры относительно к рого матрицы всех операторов ad Xтреугольны и имеют нулевую диагональ. Ф. Энгель… …   Математическая энциклопедия

  • НИЛЬАЛГЕБРА — алгебра с ассоциативными степенями (в частности, ассоциативная), в к рой всякий элемент нильпотентен. Частным случаем Н. являются нильпотентная и локально нильпотентная алгебра. В ассоциативном случае построение Н., не являющихся локально… …   Математическая энциклопедия

  • ГРУПП МНОГООБРАЗИЕ — класс всех групп, удовлетворяющих фиксированной системе тождественных соотношений где vпробегает нек рое множество Vгрупповых слов, т. е. элементов свободной группы X со свободными образующими x1,..., xn ... . Как и всякое алгебраических систем… …   Математическая энциклопедия

  • РЕГУЛЯРНОЕ КОЛЬЦО — (в смысле Неймана) ассоциативное кольцо (обычно с единицей), в к ром уравнение разрешимо для любого а. Следующие свойства ассоциативного кольца R с единицей равносильны: а) R есть Р. к.; б) каждый главный левый идеал кольца R порождается… …   Математическая энциклопедия

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”